Kamis, 13 September 2012

KK 1

HUKUM OHM

Ohm yang dimaksud diatas bukan om om biasa tetapi Ohm yang luar biasa. Ohm diambil dari nama tokoh fisika George Simon Ohm. Dia merupakan ilmuan yang berhasil menentukan hubungan antara beda potensial dengan arus listrik. Selain tiu dia juga menenmukan bahwa perbandingan antara beda potensial di suatu beban listrik dengan arus yang mengalir pada beban listrik tersebut menghasilkan angka yang konstan. Konstanta ini kemudian di kenal dengan Hambatan listrik (R). Untuk menghargai jasanya maka satuan Hambatan listrik adalah Ohm (Ω).

Bunyi hukum Ohm hampir setiap buku berbeda beda, mungkin karena Mbah Ohm udah keduluan meninggal. Tetapi secara garis besar semuanya hampir sama, dari hasil semedi sambil membaca buku fisika penulis dapat merangkum ada 2 bunyi hukum Ohm yaitu :

1. Besarnya arus listrik yang mengalir sebanding dengan besarnya beda potensial (Tegangan). Untuk sementara tegangan dan beda potensial dianggap sama walau sebenarnya kedua secara konsep berbeda. Secara matematika di tuliskan I ∞ V atau V ∞ I, Untuk menghilangkan kesebandingan ini maka perlu ditambahkan sebuah konstanta yang kemudian di kenal dengan Hambatan (R) sehingga persamaannya menjadi V = I.R. Dimana V adalah tegangan (volt), I adalah kuat arus (A) dan R adalah hambatan (Ohm).
2. Perbandingan antara tegangan dengan kuat arus merupakan suatu bilangan konstan yang disebut hambatan listrik. Secara matematika di tuliskan V/I = R atau dituliskan V = I.R.

Keduanya menghasilkan persamaan yang sama, tinggal anda menyukai dan menyakini yang mana silakan pilih saja karena keduanya benar dan ada buku literaturnya.

Fungsi utama hukum Ohm adalah digunakan untuk mengetahui hubungan tegangan dan kuat arus serta dapat digunakan untuk menentukan suatu hambatan beban listrik tanpa menggunakan Ohmmeter. Kesimpulan akhir hukum Ohm adalah semakin besar sumber tegangan maka semakin besar arus yang dihasilkan. Kemudian konsep yang sering salah pada siswa adalah hambatan listrik dipengaruhi oleh besar tegangan dan arus listrik. Konsep ini salah, besar kecilnya hambatan listrik tidak dipengaruhi oleh besar tegangan dan arus listrik tetapi dipengaruhi oleh panjang penampang, luas penampang dan jenis bahan.

Konsep Hambatan Listrik

Misalkan kita punya sebatang kawat, maka didalam kawat itu sebenarnya punya jutaan elektron yang bergerak secara acak dengan kelajuan 10 pangkat 5 m/s. Wah cepat banget ya, itu katanya Prof. Yohanes surya, saya juga belum lihat elektron. Karena yang bilang Prof ya percaya aja. Ketika kawat ini tidak kita hubungkan dengan sumber tegangan maka elektron akan bergerak disekitar tempat nya saja, dia tidak akan bisa jauh-jauh dari tempatnya semula. Kenapa kok begitu? Karena disekitarnya berdesak – desakan dengan elektron lain dan juga ada pengaruh gaya ikat inti (katanya para ahli).

Bagaimana jika kawat tersebut kita hubungkan dengan sumber tegangan maka elektron mulai mengalir (bukan bergerak ditempatnya lho) dengan kelajuan 1 mm/s. Kok bisa mengalir? konon katanya energi yang diperoleh dari sumber tegangan digunakan elektron untuk berpindah, dan saat berpindah elektron juga mengeluarkan energi (baca fisika zat padat). Dalam perjalanannya elektron juga mendapat halangan elektron – elektron yang lain. Besarnya halangan yang dialami elektron inilah yang disebut dengan hambatan listrik suatu benda.

Seperti penjelasan awal tadi Hambatan dipengaruhi oleh 3 faktor yaitu panjang, luas dan jenis bahan. Hambatan berbading lurus dengan panjang benda, semakin panjang maka semakin besar hambatan suatu benda. Hambatan juga berbading terbalik dengan luas penampang benda, semakin luas penampangnya maka semakin kecil hambatannya.. Inilah alasan mengapa kabel tiang listrik dibuat besar-besar, tujuannya adalah untuk memperkecil hambatan sehingga tegangan bisa mengalir dengan mudah. Hambatan juga berbanding lurus dengan jenis benda (hambatan jenis) semakin besar hambatan jenisnya maka semakin besar hambatan benda itu.

Secara matematika dapat dituliskan : R = ρ.L/A

Dimana ρ adalah hambatan jenis (ohm/m)

L adalah panjang benda (m)

A adalah lDari sebuah percobaan yang dilakukan untuk mengetahui hubungan antara kuat arus, tegangan dan tahanan listrik, ternyata bahwa :
1. Bila dialirkan arus listrik melalui suatu kawat penghantar tertentu :

* diberikan tegangan yang besar, maka kuat arusnya besar
* diberikan tegangan yang kecil, maka kuat arusnya kecil

2. Bila percobaan dilakukan dengan suatu tegangan tertentu :

* dipergunakan kawat penghantar yang tahanannya kecil (kawat berpenampang besar), maka kuat arusnya besar.
* dipergunakan kawat penghantar yang tahanannya besar (kawat bernampang kecil) maka kuat arusnya kecil.

Rumusan hasil percobaan tersebut adalah :

Kuat arus listrik yang mengalir dalam penghantar berbanding lurus dengan tegangannya dan berbanding terbalik dengan tahanannya.

Dalam bentuk rumus dituliskan :

I = V/R atau V = I x R atau R = V / I

Yang pertama kali menemukan hubungan antara kuat arus, tegangan dan tahanan, adalah seorang yang bernama George Simon Ohm. Hasil kesimpulannya tersebut selanjutnya dikenal dengan nama Hukum Ohm . Dengan hukum Ohm dapat diperhitunglan besarnya kuat arus, tegangan dan tahanan.
Ini adalah sebuah gambar diagram yang dapat dipergunakan sebagai rujukan untuk perhitungan:



Keterangan :
V --> Tegangan dengan satuan Volt
I --> Arus dengan satuan Ampere
R --> Tahanan dengan satuan Ohm
P --> Daya dengan satuan Watt

Pengertian Tegangan, Arus dan Tenaga pada aliran listrik

Listrik adalah sesuatu yang sangat vital bagi kehidupan manusia. Bahkan manusai dan listrik tidak bisa terpisahkan. Arus dan tegangan listrik juga nerupakan 2 hal yang sangat familiar di bidang listrik. Namun, walaupun demikian banyak diantara kita yang belum mengerti betul tentang pengertian dan definisi arus dan tegangan listrik. Dibwah ini akan dijelaskan beberapa penegrtian dan definisi dari arus dan tegangan listrik dari beberapa sumber.
 
* ARUS LISTRIK
  • Arus listrik adalah muatan listrik yang mengalir atau berpindah tempat
  • Arus listrik adalah aliran muatan listrik yang mengalir tiap satuan waktu
  • Arus listrik adalah aliran muatan listrik yang bergerak (mengalir) dalam suatu penghantar
  • Arus listrik adalah aliran partikel - partikel bermuatan listrik sebagai akibat adanya beda potensial
  • Arus listrik adalah aliran muatan listrik dalam suatu rangkaian listrik tertutup, yang didalamnya terdapat sumber tegangan 
  • Arus listrik merupakan aliran muatan listrik positif dari potensial tinggi ke potensial rendah
  • Arus listrik merupakan aliran muatan positif dan disebut arus konvensional - arahnya berlawanan dengan arus riil
* TEGANGAN LISTRIK
  • Tegangan listrik merupakan ukuran beda potensial yang mampu membangkitkan medan listrik sehingga menyebabkan timbulnya arus listrik dalam sebuah konduktor listrik
  • Tegangan listrik adalah dorongan yang ditimbulkan oleh sumber listrik
  • Tegangan listrik adalah potensial listrik akhir dikurangi potensial listrik awal atau selisih antara potensial listrik
  • Tegangan listrik adalah perbedaan potensial listrik antara dua titik dalam rangkaian listrik, dinyatakan dalam satuan volt
 
Tenaga listrik adalah tingkat di mana energi listrik yang ditransfer oleh sebuah sirkuit listrik. Satuan SI untuk daya adalah watt, satu joule per detik.

Tenaga listrik, seperti daya mekanik, dilambangkan oleh huruf P dalam persamaan listrik. Watt adalah istilah yang digunakan dalam bahasa sehari-hari berarti "tenaga listrik dalam watt."

Arus searah
Dalam rangkaian resistif langsung arus, daya listrik dihitung menggunakan hukum Joule:

P = IV

di mana P adalah daya listrik, beda potensial V, dan aku arus listrik.

Arus bolak-balik
Dalam sirkuit bolak-balik saat ini, terdapat unsur-unsur penyimpanan energi seperti induktansi dan kapasitansi dapat mengakibatkan pembalikan berkala terhadap arah aliran energi. Bagian dari arus kekuatan itu, rata-rata selama siklus lengkap gelombang AC, hasil bersih dalam transfer energi dalam satu arah dikenal sebagai daya nyata (juga disebut sebagai daya aktif). Sebagian dari aliran daya karena energi yang tersimpan, yang kembali ke sumber di setiap siklus, dikenal sebagai daya reaktif.

Hubungan antara daya nyata, daya reaktif dan daya nyata dapat dinyatakan dengan mewakili jumlah sebagai vektor. Daya nyata direpresentasikan sebagai vektor horizontal dan daya reaktif direpresentasikan sebagai vektor vertikal. Vektor daya nyata adalah sisi miring pada segitiga siku-siku yang dibentuk dengan menghubungkan vektor daya nyata dan reaktif.

Daya listrik mengalir di manapun terdapat medan listrik dan magnetik ada bersama-sama dan berfluktuasi di tempat yang sama. Contoh paling sederhana dari hal ini adalah dalam rangkaian listrik, sebagai bagian sebelumnya menunjukkan. Dalam kasus umum, bagaimanapun, persamaan sederhana P = IV harus diganti dengan perhitungan yang lebih kompleks, integral dari produk silang dari vektor medan listrik dan magnetik di daerah tertentu.

Pengertian Resistor Atau Tahanan


  Resistor (Tahanan) :
Resistor adalah komponen elektronik dua kutub yang didesain untuk menahan arus listrik dengan memproduksi tegangan listrik di antara kedua kutubnya, nilai tegangan terhadap resistansi berbanding dengan arus yang mengalir, berdasarkan hukum Ohm:
\begin{align}V&=IR\\
I&=\frac{V}{R}\end{align} 
Atau
           Cara mencarinya :
1. Jika ingin mencari I, maka tutup saja I dengan tangan atau kertas, maka Anda akan melihat V/R (V bagi R)
2. Jika ingin mencari R, maka tutup saja R dengan tangan atau kertas, maka Anda akan melihat V/I (V bagi I)

3. Jika ingin mencari V, maka tutup saja V dengan tangan atau kertas, maka Anda akan melihat I * R (I kali R)
  
Resistor digunakan sebagai bagian dari jejaring elektronik dan sirkuit elektronik, dan merupakan salah satu komponen yang paling sering digunakan. Resistor dapat dibuat dari bermacam-macam kompon dan film, bahkan kawat resistansi (kawat yang dibuat dari paduan resistivitas tinggi seperti nikel-kromium).
Karakteristik utama dari resistor adalah resistansinya dan daya listrikyang dapat dihantarkan. Karakteristik lain termasuk koefisien suhu, desah listrik, dan induktansi.
Resistor dapat diintegrasikan kedalam sirkuit hibrida dan papan sirkuit cetak, bahkan sirkuit terpadu. Ukuran dan letak kaki bergantung pada desain sirkuit, kebutuhan daya resistor harus cukup dan disesuaikan dengan kebutuhan arus rangkaian agar tidak terbakar.
SATUAN RESISTOR
Ohm (simbol: Ω adalah satuan SI untuk resistansi listrik, diambil dari nama Georg Ohm.
Satuan yang digunakan prefix :
- Ohm = Ω
- Kilo Ohm = KΩ
- Mega Ohm = MΩ
- KΩ = 1000Ω
- MΩ = 1000000Ω
Komposisi karbon
Resistor komposisi karbon terdiri dari sebuah unsur resistif berbentuk tabung dengan kawat atau tutup logam pada kedua ujungnya. Badan resistor dilindungi dengan cat atau plastik. Resistor komposisi karbon lawas mempunyai badan yang tidak terisolasi, kawat penghubung dililitkan disekitar ujung unsur resistif dan kemudian disolder. Resistor yang sudah jadi dicat dengan kode warna sesuai dengan nilai resistansinya.
Unsur resistif dibuat dari campuran serbuk karbon dan bahan isolator (biasanya keramik). Resin digunakan untuk melekatkan campuran. Resistansinya ditentukan oleh perbandingan dari serbuk karbon dengan bahan isolator. Resistor komposisi karbon sering digunakan sebelum tahun 1970-an, tetapi sekarang tidak terlalu populer karena resistor jenis lain mempunyai karakteristik yang lebih baik, seperti toleransi, kemandirian terhadap tegangan (resistor komposisi karbon berubah resistansinya jika dikenai tegangan lebih), dan kemandirian terhadap tekanan/regangan. Selain itu, jika resistor menjadi lembab, panas solder dapat mengakibatkan perubahan resistansi dan resistor jadi rusak.
Walaupun begitu, resistor ini sangat reliabel jika tidak pernah diberikan tegangan lebih ataupun panas lebih.
Resistor ini masih diproduksi, tetapi relatif cukup mahal. Resistansinya berkisar antara beberapa miliohm hingga 22 MOhm.
Film karbon
Selapis film karbon diendapkan pada selapis substrat isolator, dan potongan memilin dibuat untuk membentuk jalur resistif panjang dan sempit. Dengan mengubah lebar potongan jalur, ditambah dengan resistivitas karbon (antara 9 hingga 40 µΩ-cm) dapat memberikan resistansi yang lebar. Resistor film karbon memberikan rating daya antara 1/6 W hingga 5 W pada 70 °C. Resistansi tersedia antara 1 ohm hingga 10 MOhm. Resistor film karbon dapat bekerja pada suhu di antara -55 °C hingga 155 °C. Ini mempunyai tegangan kerja maksimum 200 hingga 600 v.
Film logam
Unsur resistif utama dari resistor foil adalah sebuah foil logam paduan khusus setebal beberapa mikrometer.
Resistor foil merupakan resistor dengan presisi dan stabilitas terbaik. Salah satu parameter penting yang memengaruhi stabilitas adalah koefisien temperatur dari resistansi (TCR). TCR dari resistor foil sangat rendah. Resistor foil ultra presisi mempunyai TCR sebesar 0.14ppm/°C, toleransi ±0.005%, stabilitas jangka panjang 25ppm/tahun, 50ppm/3 tahun, stabilitas beban 0.03%/2000 jam, EMF kalor 0.1μvolt/°C, desah -42dB, koefisien tegangan 0.1ppm/V, induktansi 0.08μH, kapasitansi 0.5pF.
Penandaan resistor
Resistor aksial biasanya menggunakan pola pita warna untuk menunjukkan resistansi. Resistor pasang-permukaan ditandas secara numerik jika cukup besar untuk dapat ditandai, biasanya resistor ukuran kecil yang sekarang digunakan terlalu kecil untuk dapat ditandai. Kemasan biasanya cokelat muda, cokelat, biru, atau hijau, walaupun begitu warna lain juga mungkin, seperti merah tua atau abu-abu.
Resistor awal abad ke-20 biasanya tidak diisolasi, dan dicelupkan ke cat untuk menutupi seluruh badan untuk pengkodean warna. Warna kedua diberikan pada salah satu ujung, dan sebuah titik (atau pita) warna di tengah memberikan digit ketiga. Aturannya adalah "badan, ujung, titik" memberikan urutan dua digit resistansi dan pengali desimal. Toleransi dasarnya adalah ±20%. Resistor dengan toleransi yang lebih rapat menggunakan warna perak (±10%) atau emas (±5%) pada ujung lainnya.
Identifikasi empat pita
Identifikasi empat pita adalah skema kode warna yang paling sering digunakan. Ini terdiri dari empat pita warna yang dicetak mengelilingi badan resistor. Dua pita pertama merupakan informasi dua digit harga resistansi, pita ketiga merupakan faktor pengali (jumlah nol yang ditambahkan setelah dua digit resistansi) dan pita keempat merupakan toleransi harga resistansi. Kadang-kadang terdapat pita kelima yang menunjukkan koefisien suhu, tetapi ini harus dibedakan dengan sistem lima warna sejati yang menggunakan tiga digit resistansi.
Sebagai contoh, hijau-biru-kuning-merah adalah 56 x 104Ω = 560 kΩ ± 2%. Deskripsi yang lebih mudah adalah: pita pertama, hijau, mempunyai harga 5 dan pita kedua, biru, mempunyai harga 6, dan keduanya dihitung sebagai 56. Pita ketiga,kuning, mempunyai harga 104, yang menambahkan empat nol di belakang 56, sedangkan pita keempat, merah, merupakan kode untuk toleransi ± 2%, memberikan nilai 560.000Ω pada keakuratan ± 2%.
Warna
Pita pertama
Pita kedua
Pita ketiga
(pengali)
Pita keempat
(toleransi)
Pita kelima
(koefisien suhu)
Hitam
0
0
× 100
Cokelat
1
1
×101
± 1% (F)
100 ppm
Merah
2
2
× 102
± 2% (G)
50 ppm
Oranye
3
3
× 103
15 ppm
Kuning
4
4
× 104
25 ppm
Hijau
5
5
× 105
± 0.5% (D)
Biru
6
6
× 106
± 0.25% (C)
Ungu
7
7
× 107
± 0.1% (B)
Abu-abu
8
8
× 108
± 0.05% (A)
Putih
9
9
× 109
Emas
× 10-1
± 5% (J)
Perak
× 10-2
± 10% (K)
Kosong
± 20% (M)
Identifikasi lima pita
Identifikasi lima pita digunakan pada resistor presisi (toleransi 1%, 0.5%, 0.25%, 0.1%), untuk memberikan harga resistansi ketiga. Tiga pita pertama menunjukkan harga resistansi, pita keempat adalah pengali, dan yang kelima adalah toleransi. Resistor lima pita dengan pita keempat berwarna emas atau perak kadang-kadang diabaikan, biasanya pada resistor lawas atau penggunaan khusus. Pita keempat adalah toleransi dan yang kelima adalah koefisien suhu.
Resistor pasang-permukaan
Gambar ini menunjukan empat resistor pasang permukaan (komponen pada kiri atas adalah kondensator) termasuk dua resistor nol ohm. Resistor nol ohm sering digunakan daripada lompatan kawat sehingga dapat dipasang dengan mesin pemasang resistor.
Resistor pasang-permukaan dicetak dengan harga numerik dengan kode yang mirip dengan kondensator kecil. Resistor toleransi standar ditandai dengan kode tiga digit, dua pertama menunjukkan dua angka pertama resistansi dan angka ketiga menunjukkan pengali (jumlah nol). Contoh:
"334"
= 33 × 10.000 ohm = 330 KOhm
"222"
= 22 × 100 ohm = 2,2 KOhm
"473"
= 47 × 1,000 ohm = 47 KOhm
"105"
= 10 × 100,000 ohm = 1 MOhm
Resistansi kurang dari 100 ohm ditulis: 100, 220, 470. Contoh:
"100"
= 10 × 1 ohm = 10 ohm
"220"
= 22 × 1 ohm = 22 ohm
Kadang-kadang harga-harga tersebut ditulis "10" atau "22" untuk mencegah kebingungan.
Resistansi kurang dari 10 ohm menggunakan 'R' untuk menunjukkan letak titik desimal. Contoh:
"4R7"
= 4.7 ohm
"0R22"
= 0.22 ohm
"0R01"
= 0.01 ohm
Resistor presisi ditandai dengan kode empat digit. Dimana tiga digit pertama menunjukkan harga resistansi dan digit keempat adalah pengali. Contoh:
"1001"
= 100 × 10 ohm = 1 kohm
"4992"
= 499 × 100 ohm = 49,9 kohm
"1000"
= 100 × 1 ohm = 100 ohm
"000" dan "0000" kadang-kadang muncul bebagai harga untuk resistor nol ohm
Resistor pasang-permukaan saat ini biasanya terlalu kecil untuk ditandai.
Penandaan tipe industri
Format: XX YYYZ
X: kode tipe
Y: nilai resistansi
Z: toleransi
Rating Daya pada 70 °C
Kode Tipe
Rating Daya (Watt)
Teknik MIL-R-11
Teknik MIL-R-39008
BB
RC05
RCR05
CB
¼
RC07
RCR07
EB
½
RC20
RCR20
GB
1
RC32
RCR32
HB
2
RC42
RCR42
GM
3
-
-
HM
4
-
-
Kode Toleransi
Toleransi
Teknik Industri
Teknik MIL
±5%
5
J
±20%
2
M
±10%
1
K
±2%
-
G
±1%
-
F
±0.5%
-
D
±0.25%
-
C
±0.1%
-
B
Rentang suhu operasional membedakan komponen kelas komersil, kelas industri dan kelas militer.
Kelas komersil: 0 °C hingga 70 °C
Kelas industri: −40 °C hingga 85 °C (seringkali −25 °C hingga 85 °C)
Kelas militer: −55 °C hingga 125 °C (seringkali -65 °C hingga 275 °C)

Macam-macam atau jenis-jenis Resistor

Macam-macam resistor, resistor hanya ada 2 macam, jenis-jenis resistor, resistor hanya ada 2 jenis.

Pada dasarnya, resistor hanya ada dua macam, yakni resistor tetap (fixed resistor) dan resistor tidak tetap (variable resistor).

Resistor
Resistor Tetap (Fixed Resistor):
1. Resistor Kawat
2. Resistor Batang Karbon
3. Resistor Keramik atau Porselin
4. Resistor Film Karbon
5. Resistor Film Metal
Resistor Tidak Tetap (Variable Resistor):
1. Potensiometer
2. Potensiometer Geser
3. Trimpot
4. NTC dan PTC
5. LDR

Untuk resistor tetap, ciri - cirinya adalah nilai resistansinya tidak dapat diubah - ubah karena pabrik pembuatnya telah menentukan nilai tetap dari resistor tersebut. Sedangkan, untuk variable resistor, ciri - cirinya adalah nilai resistansinya dapat berubah-ubah, bisa jadi dirubah dengan sengaja atau berubah sendiri karena pengaruh lingkungan. Dengan demikian, sebagian resistor variabel dapat kita tentukan besar resistansinya.

Macam - macam resistor tetap (fixed resistor):

1. Resistor Kawat
Resistor kawat adalah jenis resistor generasi pertama yang lahir pada saat rangkaian elektronika masih menggunakan tabung hampa (vacuum tube). Bentuknya bervariasi dan memiliki ukuran yang cukup besar. Resistor kawat ini biasanya banyak dipergunakan dalam rangkaian power karena memiliki resistansi yang tinggi dan tahan terhadap panas yang tinggi. Jenis lainnya yang masih dipakai sampai sekarang adalah jenis resistor dengan lilitan kawat yang dililitkan pada bahan keramik, kemudian dilapisi dengan bahan semen. Rating daya yang tersedia untuk resistor jenis ini adalah dalam ukuran 1 watt, 2 watt, 5 watt, dan 10 watt. Ilustrasi dari resistor kawat dapat dilihat pada gambar di samping.
2. Resistor Batang Karbon (Arang)
Pada awalnya, resistor ini dibuat dari bahan karbon kasar yang diberi lilitan kawat yang kemudian diberi tanda dengan kode warna berbentuk gelang dan pembacaannya dapat dilihat pada tabel kode warna. Jenis resistor ini juga merupakan jenis resistor generasi awal setelah adanya resistor kawat. Sekarang sudah jarang untuk dipakai pada rangkaian – rangkaian elektronika. Bentuk dari resistor jenis ini dapat dilihat pada gambar di samping.
3. Resistor Keramik atau Porselin
Dengan adanya perkembangan teknologi di bidang elektronika, saat ini telah dikembangkan jenis resistor yang terbuat dari bahan keramik atau porselin. Kemudian, dengan perkembangan yang ada, telah dibuat jenis resistor keramik yang dilapisi dengan kaca tipis. Jenis resistor ini telah banyak digunakan dalam rangkaian elektronika saat ini karena bentuk fisiknya kecil dan memiliki resistansi yang tinggi. Resistor ini memiliki rating daya sebesar 1/4 watt, 1/2 watt, 1 watt, dan 2 watt. Bentuk dari resistor ini dapat dilihat pada gambar di samping.
4. Resistor Film Karbon
Resistor film karbon ini adalah resistor hasil pengembangan dari resistor batang karbon. Sejalan dengan perkembangan teknologi, para produsen komponen elektronika telah memunculkan jenis resistor yang dibuat dari bahan karbon dan dilapisi dengan bahan film yang berfungsi sebagai pelindung terhadap pengaruh luar. Nilai resistansinya dicantumkan dalam bentuk kode warna. Resistor ini juga sudah banyak digunakan dalam berbagai rangkaian elektronika karena bentuk fisiknya kecil dan memiliki resistansi yang tinggi. Namun, untuk masalah ukuran fisik, resistor ini masih kalah jika dibandingkan dengan resistor keramik. Resistor ini memiliki rating daya sebesar 1/4 watt, 1/2 watt, 1 watt, dan 2 watt. Bentuk dari resistor ini dapat dilihat pada gambar di samping.
5. Resistor Film Metal
Resistor film metal dibuat dengan bentuk hampir menyerupai resistor film karbon. Resistor tahan terhadap perubahan temperatur. Resistor ini juga memiliki tingkat kepresisian yang tinggi karena nilai toleransi yang tercantum pada resistor ini sangatlah kecil, biasanya sekitar 1% atau 5%. Jika dibandingkan dengan resistor film karbon, resistor film metal ini memiliki tingkat kepresisian yang lebih tinggi dibandingkan dengan resistor film karbon karena resistor film metal ini memiliki 5 buah gelang warna, bahkan ada yang 6 buah gelang warna. Sedangkan, resistor film karbon hanya memiliki 4 buah gelang warna. Resistor film metal ini sangat cocok digunakan dalam rangkaian – rangkaian yang memerlukan tingkat ketelitian yang tinggi, seperti alat ukur. Resistor ini memiliki rating daya sebesar 1/4 watt, 1/2 watt, 1 watt, dan 2 watt. Bentuk dari resistor ini dapat dilihat pada gambar di samping.


Macam - macam resistor variabel (variable resistor):


1. Potensiometer
Potensiometer merupakan variable resistor yang paling sering digunakan. Pada umumnya, potensiometer terbuat dari kawat atau karbon. Potensiometer yang terbuat dari kawat merupakan potensiometer yang telah lama lahir pada generasi pertama pada waktu rangkaian elektronika masih menggunakan tabung hampa (vacuum tube). Potensiometer dari kawat ini memiliki bentuk yang cukup besar, sehingga saat ini sudah jarang ada yang memakai potensiometer seperti ini. Pada saat ini, potensiometer lebih banyak terbuat dari bahan karbon. Ukurannya pun lebih kecil, namun dengan resistansi yang besar. Gambar di samping adalah potensiometer yang terbuat dari bahan karbon. Pada umumnya, perubahan resistansi pada potensiometer terbagi menjadi 2, yakni linier dan logaritmik. Yang dimaksud dengan perubahan secara linier adalah perubahan nilai resistansinya sebanding dengan arah putaran pengaturnya. Sedangkan, yang dimaksud dengan perubahan secara logaritmik adalah perubahan nilai resistansinya berdasarkan perhitungan logaritmik. Pada umumnya, potensiometer logaritmik memiliki perubahan resistansi yang cukup unik karena nilai maksimal dari resistansi diperoleh ketika kita telah melakaukan setengah kali putaran pada pengaturnya. Sedangkan, nilai minimal diperoleh saat pengaturnya berada pada titik nol atau titik maksimal putaran. Untuk dapat mengetahui apakah potensiometer tersebut linier atau logaritmik, dapat dilihat huruf yang tertera di bagian belakang badannya. Jika tertera huruf B, maka potensiometer tersebut logaritmik. Jika huruf A, maka potensiometer linier. Pada umumnya, nilai resistansi juga tertera pada bagian depan badannya. Nilai yang tertera tersebut merupakan nilai resistansi maksimal dari potensiometer.
2. Potensiometer Geser
Potensiometer geser merupakan kembaran dari potensiometer yang telah dibahas di atas. Perbedaannya adalah cara mengubah nilai resistansinya. Pada potensiometer yang telah dibahas di atas, cara mengubah nilai resistansinya adalah dengan cara memutar gagang yang muncul keluar. Sedangkan, untuk potensiometer geser, cara mengubah nilai resistansinya adalah dengan cara menggeser gagang yang muncul keluar. Bentuk dari potensiometer geser dapat dilihat pada gambar di samping. Pada umumnya, bahan yang digunakan untuk membuat potensiometer ini adalah karbon. Adapula yang terbuat dari kawat, namun saat ini sudah jarang digunakan karena ukurannya yang besar. Pada potensiometer geser ini, perubahan nilai resistansinya hanyalah perubahan secara linier. Bentuk potensiometer geser dapat dilihat pada gambar di atas dengan komponen yang ditengah.
3. Trimpot
Trimpot adalah kependekan dari Tripotensiometer. Sifat dan karakteristik dari trimpot tidak jauh beda dengan potensiometer. Hanya saja, trimpot ini memiliki ukuran yang jauh lebih kecil jika dibandingkan dengan potensiometer. Perubahan nilai resistansinya juga dibagi menjadi 2, yakni linier dan logaritmik. Huruf B yang tertera pada trimpot menyatakan perubahan nilai resistansinya secara logaritmik, sedangkan huruf A untuk perubahan secara linier. Untuk mengubah nilai resistansinya, kita dapat memutar lubang tengah pada badan trimpot dengan menggunakan obeng. Bentuk trimpot dapat dilihat pada gambar di samping.
4. NTC dan PTC
NTC (Negative Temperature Coefficient) dan PTC (Positive Temperature Coefficient) merupakan resistor yang nilai resistansinya berubah jika terjadi perubahan temperatur di sekelilingnya. Untuk NTC, nilai resistansi akan naik jika temperatur sekelilingnya turun. Sedangkan, nilai resistansi PTC akan naik jika temperatur sekelilingnya naik. Kedua komponen ini sering digunakan sebagai sensor untuk mengukur suhu atau temperatur daerah di sekelilingnya. Bentuk NTC dan PTC dapat dilihat pada gambar di samping.
5. LDR
LDR (Light Dependent Resistor) merupakan resistor yang nilai resistansinya berubah jika terjadi perubahan intensitas cahaya di daerah sekelilingnya. Pada prinsipnya, intensitas cahaya yang besar mampu mendorong elektron untuk menembus batas – batas pada LDR. Dengan demikian, nilai resistansi LDR akan naik jika intensitas cahaya yang diterimanya sedikit atau kondisi sekelilingnya gelap. Sedangkan, nilai resistansi LDR akan turun jika intensitas cahaya yang diterimanya banyak atau kondisi sekelilingnya terang. LDR sering digunakan sebagai sensor cahaya, khususnya sebagai sensor cahaya yang digunakan pada lampu taman. Bentuk LDR dapat dilihat pada gambar di atas.

Pengertian Kapasitor / Kondensator Dalam Bidang Elektronika

Posted by MohDuro On 23 Juni, 2012
Pengertian Kapasitor / Kondensator Dalam Bidang Elektronika | Kondensator / Capasitor pertama kali ditemukan oleh Michael Faraday (1791-1867) Kondensator (Capasitor) adalah komponen Elektronika yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidak seimbangan internal dari muatan listrik.

Kondensator memiliki satuan yang disebut Farad. Kondensator juga dikenal  sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini.

Kondensator pertama kali disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), yaitu kemampuan alat untuk menyimpan suatu muatan listrik.

Kebanyakan negara tidak menggunakan bahasa Inggris. Umumnya negara-negara masih mengacu pada bahasa Italia "condensatore", seperti bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.

Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan  elektrolit dan biasanya berbentuk tabung. Gambar dibawah adalah salah satu contoh condesator beserta simbolnya. Simbol kondensator (mempunyai kutub positif dan negatif) pada skema elektronika. 
Pengertian Kapasitor / Kondensator Dalam Bidang Elektronika
Salah Satu JenisKondensator dan Simbol
Sedangkan jenis Kapasitor kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif  atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan  lainnya seperti tablet atau kancing baju yang sering disebut kapasitor (capacitor), lihat gambar :
Pengertian Kapasitor / Kondensator Dalam Bidang Elektronika
Salah Satu Jenis Kapasitor dan Simbol
Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar.

Pada saat ini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu  elektronika disingkat dengan huruf (C).

Satuan dalam kondensator disebut Farad. Satu Farad = 9 x 1011 cm² yang artinya luas permukaan kepingan tersebut menjadi 1 Farad sama dengan 106 mikroFarad (µF), jadi 1 µF =  9 x 105 cm².

Satuan-satuan sentimeter persegi (cm²) jarang sekali digunakan karena kurang praktis, satuan yang banyak digunakan adalah :
  • 1 Farad = 1.000.000 µF (mikro Farad)
  • 1 µF = 1.000.000 pF (piko Farad)
  • 1 µF = 1.000 nF (nano Farad)
  • 1 nF = 1.000 pF (piko Farad)
  • 1 pF = 1.000 µµF (mikro-mikro Farad) 
dalam komponen elektronika bermacam-macam di antaranya adalah kapasitor bipolar/ non polar dan capasitor polar (memiliki kutub -/+), walaupun kapasitor ini sama-sama di gunakan untuk menyimpan muatan listrik, tapi banyak perbedaan diantara dua macam capasitor ini, baik dari bahan yang digunakan untuk membuat capasitor tersebut maupun dalam kegunaannya.

Jenis-jenis kapasitor juga dapat di bedakan berdasarkan dari bahan dielektriknya. Bahan dielektrik dapat di bedakan menjadi beberapa bagian, yaitu jenis-jenis kapasitorPengertian Kapasitor keramik, elektrolit (Elco), tantalum, Multilayer, Polyester Film, Electric Double, (Super Capacitor), Trimmer dan kapasitor Tuning.

Kapasitor keramik adalah kapasitor yang dibuat dengan bahan dasar keramik yang di gunakan untuk media penyimpan arus. Cara memasangnya adalah di letakan diantara dua pin kaki kapasitor tersebut sedemikian rupa sehingga dapat menyimpan arus listrik.

Di bawah ini adalah gambar kapasitor dan jenis-jenis kapasitor :

Jenis-Jenis Kapasitormacam-macam kapasitor

Kapasitor tantalum merupakan jenis-jenis kapasitor elektrolit yang elektrodanya terbuat dari material tantalum. Komponen ini memiliki polaritas, cara membedakannya dengan mencari tanda atau tanda lainya yang ada pada bodi kapasitor, tanda ini menyatakan bahwa pin dibawahnya memiliki polaritas positif.

Sedangkan jenis-jenis kapasitor Multilayer terbuat dari bahan material, kapasitor ini sama dengan kapasitor keramik, bedanya hanya terdapat pada jumlah lapisan yang menyusun dielektriknya. Pada jenis ini dielektriknya disusun dengan banyak lapisan atau biasanya disebut dengan layer dengan ketebalan 10 samapi dengan 20 μm dan pelat elektrodanya dibuat dari logam yang murni. Selain itu ukurannya kecil dan memiliki karakteristik suhu yang lebih bagus daripada kapasitor keramik.

Fungsi kapasitor pada suatu rangkaian juga mempunyai maksud dan tujuan di antaranya, sebagai, penghubung (coupling) yang menghubungkan masing-masing bagian dalam suatu rangkaian, memisahkan arus bolak-balik dari arus searah, sebagai filter yang dipakai pada rangkaian catu dayaRangkaian Adaptor, sebagai pembangkit frekuensi dalam rangkaian pemancar dan untuk menghemat daya listrik dalam rangkaian lampu TL.

Demikian penjelasan terbaru mengenai Jenis-Jenis Kapasitor, semoga artikel ini bermanfaat bagi anda yang sedang mencari informasi tentang Kapasitor. Untuk mengetahui tentang komponen kapasitor, anda bisa baca juga artikel terbaru kami lainnya mengenai Pengertian Kapasitor dan Fungsi Kapasitor.

Cara menentukan Nilai Resistor dari Membaca gelang


Resistor adalah suatu komponen yang berfungsi sebagai tahanan / hambatan dalam menahan arus masuk. Pada resistor terdapat gelang warna yaitu gelang pertama  tidak boleh langsung berwarna hitam serta pada gelang ketiga berwarna emas, perak, tanpa warna ( emas x 1/10 dan perak x 1/100 ). dan resistor memiliki beberapa Ukuran atau jenisnya,..dalam hal ukuran mulai dari 1/2 , 1/4, 1/8, 2, 3, dan emapat serta jenisnya berdasarkan jumplah gelang atau pita yang melingkar, ada yang 4 gelang, 5 gelang. Gelang terakhir sebagai toleransi penghitungan,……serta memiliki satuan seperti, OHM, KILO, MEGA,
anda bisa menggunakan software ResistrorCC atau bisa download disini
perhatikan gambar dibawah ini,….



Dan Simbol Resistor  dalam dunia electronika arus lemah adalah seperti gambar berikut:
Kita bisa menentukan nilai berapakah resistansi pada
Resistor tersebut dengan mengetahui warna gelang yang ada pada body komponen tersebut.
sebagai acuan kita bisa lihat penjelasan seperti gambar berikut ini
Resistor adalah suatu komponen yang berfungsi sebagai tahanan / hambatan dalam menahan arus masuk. Pada resistor terdapat gelang warna yaitu gelang pertama  tidak boleh langsung berwarna hitam serta pada gelang ketiga berwarna emas, perak, tanpa warna ( emas x 1/10 dan perak x 1/100 ). dan resistor memiliki beberapa Ukuran atau jenisnya,..dalam hal ukuran mulai dari 1/2 , 1/4, 1/8, 2, 3, dan emapat serta jenisnya berdasarkan jumplah gelang atau pita yang melingkar, ada yang 4 gelang, 5 gelang. Gelang terakhir sebagai toleransi penghitungan,……serta memiliki satuan seperti, OHM, KILO, MEGA,
perhatikan gambar dibawah ini,….
Satuan Simbol
Resistor.
Jenis Ukuran Resistor

Gambar Ukuran Resitor.
Tabel Warna.






Nilai Warna Pada Resistor




Pengkodean Warna
Penghitungan Warna dan Toleransi






Label, Skema atau gambar di atas smuanya menunjukan Nilai dan Pengkodean setiap Gelang warna yang ada pada resistor.
Sebagai Pembelajaran Perhatikan Tabel dibawah ini ;
No Susunan Warna Nilai Keterangan
1. Coklat, Hitam, emas, emas 1 Ohm Bertorleransi  5%
2. Coklat, Hitam, Hitam, Emas 10 Ohm Bertorleransi  5%
3. Coklat, Hitam , Orange, Emas 10 K / Kilo Bertorleransi  5%
4. Coklat, Hitam, Kuning, Emas 100 K / Kilo Bertorleransi  5%
5. Coklat, Hitam, Biru, Emas 10 Mega Bertorleransi  5%
6. Coklat, Hitam, Emas, Perak 1,0 Ohm Bertorleransi  10%
7. Orange, Putih, Emas, Perak 3,9 Ohm Bertorleransi  10%
8. Hijau, Hitam, Perak, Emas 0,5 Ohm Bertorleransi  5%


Tidak ada komentar:

Posting Komentar